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8.8 =
Indeterminate forms and L’'Hopital’s Rule

In Chapter 2, we described the forms 0/0, /oo, and % — oo as indeterminate,
because they do not guarantee that a limit exists, nor do they indicate what the
limit is, if one exists. When we encountered one of these indeterminate forms,
we attempted to rewrite the expression by using various algebraic techniques,
as illustrated by the examples in Table 8.1.

TABLE 8.1 INDETERMINATE FORMS
Bl Divide numerator
0/0 T li[lll 2c— 1) = -4 and denominator
# ¥ by (x + 1).
o0 /c0 lim 3~ 1 = lim 3 = (%) = ad Z:;'ﬁ:;g;?ﬁ:g;r
e 22+ 1 e 2+ (1430 2 g
by x~.
©—oc | lim@x— V2 +x) = lim——2 Rationalize:
g -y :
Then divide
. -1 1 numerator and
=m -—-——= —— = e
5= 1+ V00D ) denominator by x.

Occasionally, we can extend these algebraic techniques to find limits of
transcendental functions. For instance, the limit
=
-0 e —1

produces the indeterminate form 0/0. Factoring and then dividing, we have
2% x b
lim ex 1 = fin (e* + 1)(e 1)
0 e* —1 x>0 e —1
=lirg(ex+ 1)=2

However, not all indeterminate forms can be evaluated by algebraic
manipulation. This is particularly true when both algebraic and transcendental
functions are involved. For instance, the limit
2%

lim A
x=>0 X

produces the indeterminate form 0/0. Dividing the numerator and denomina-

tor by x to obtain
; [ e 1 ]
lim — =
=0 L x X

merely produces another indeterminate form, © — o, Of course, we could use
a calculator to estimate this limit, as shown in Table 8.2. From the table, the
limit appears to be 2. (This limit will be verified in Example 1.)
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TABLE 8.2

X -1.0 | -0.1 | =0.01 | —0.001 | O | 0.001 | 0.01 | 0.1 1.0

0.865 | 1.813 | 1.980 | 1.998 71 2.002 | 2.020 | 2.214 | 6.389

To find the limit illustrated in Table 8.2, we introduce a theorem called
L’Hopital’s Rule. This theorem states that under certain conditions the limit
of the quotient f(x)/g(x) is determined by the limit of f'(x)/g’(x). This theo-
rem is named after the French mathematician Guillaume Francois Antoine De
L’Hopital (1661-1704), who published the first calculus text in 1696. To
prove this theorem, we use a more general result called the Extended Mean-
Value Theorem, which states the following. If f and g are differentiable on an
open interval (a, b) and continuous on [a, b] such that g(x) # O for any x in
(a, b), then there exists a point ¢ in (a, b) such that

Guillaume L’Hopital ;

f© _ fb) — f@

g'e) g —g@
We prove the Extended Mean-Value Theorem and L’Hopital’s Rule in Appen-
dix A.
L Remark In the following theorem, we use the symbol ‘‘lim’’ to represent any of the
following types of limits:

lim lim lim lim lim
THEOREM 8.7 L’HOPITAL'S RULE

If lim f(x)/g(x) results in the indeterminate form 0/0 or ®/% * then
. Hg . 1)
li =1 ;
~o e Ry

provided the latter limit exists (or is infinite).

EXAMPLE 1  Indeterminate form 0/0

Evaluate e =1

lim ———

x>0 X
Solution: Since direct substitution results in the indeterminate form 0/0, we
apply L’Hopital’s Rule to obtain

e —1 dx [ — 1] 2¢>
lim —— = lim = lim =2
x>0 X x>0 d x>0 1 -
o [x] B

*The indeterminate form e/ actually comes in four forms: oo/, (—)/oo, 0o/(—00),
and (—)/(—). L’Hopital’s Rule can be applied to each of these forms.
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Remark In writing the string of equations in Example 1, we actually do not know that
the first limit is equal to the second until we have shown that the second limit exists. In
other words, if the second limit had not existed, it would not have been permissible to
apply L’Hopital’s Rule.

Occasionally it is necessary to apply L’Hopital’s Rule more than once to
remove an indeterminate form. This is illustrated in the next example.

EXAMPLE 2  Indeterminate form oo/

Evaluate
2

lim

—
x>—x €

Solution: Since direct substitution results in the indeterminate form o/, we
apply L’Hopital’s Rule to obtain

d
2 dx [x2]
lim — = lim = lim =
x—>— xX—>—© d — xX—>— e
=—={e™"]
dx

Since this limit yields the indeterminate form (—)/(—%), we apply L’Hopit-
al’s Rule again to obtain

d
R B "
lim — = lim —/—— = lim — =0
xo—oo —e x—>—c0 i[—evx] x>—00 € -
T 7

In addition to the forms 0/0, %/, and ® — o, there are other indetermi-
nate forms, such as 0 - «, 1%, ®, and 0°. For example, consider the following
four limits that lead to the indeterminate form O - oc:

ipe(L), i) me(k)  me(d)

—— e —_—

limit is 1 limit is 2 limit is O limit is

Since each limit is different, it is clear that the form O - « is indeterminate in
the sense that it does not determine the value (or even the existence) of the
limit. The following examples indicate methods to evaluate these forms. Basi-
cally, we attempt to convert each of these forms to those for which L’Hopit-
al’s Rule is applicable.

EXAMPLE 3 Indeterminate form 0 - ©

Evaluate

lim e *Vx

X—>00
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Solution: Since direct substitution produces the indeterminate form 0 - o, we
rewrite the limit to fit the form 0/0 or /. In this case, we choose the second
form and write

lim e *Vx = lim \e/x;

X—>00 X—>00

Now, by L’Hépital’s Rule, we have

Vix 1/(2Vx) 1
lim /= = lim —~~ =lim———=0
x>0 ex x>0 ex x>0 2\/; ex :I

Remark If rewriting a limit in one of the forms 0/0 or /e does not seem to work, try
the other form. For instance, in Example 3 we could have written the limit. as

e—X
x =lim —7
am = =12

lim e™
which yields the indeterminate form 0/0. However, in applying L’Hopital’s Rule to
this limit, we obtain

-X -Xx

lim —— = lim ———
x—1/2 Seso0 __1/(2x3/2)

x>0

which also yields the indeterminate form 0/0. Moreover, since the quotient seems to be
getting more complicated, we abandon this approach and try the co/e form, as shown
in Example 3. '

The indeterminate forms 1, »°, and 0° arise from limits of functipns
that have a variable base and a variable exponent. When we encountered this
type of function in Section 6.2, we used logarithmic differentiation to find the
derivative. We use a similar procedure when taking limits, as indicated in the
next example.

EXAMPLE 4  Indeterminate form 17

Evaluate

. 2\
lim (1 + —)
x> X
Solution: Since direct substitution yields the indeterminate form 1%, we pro-
ceed in the following manner. We assume the limit exists, and we represent it

by
i (1+2)
y—hm<1+ .

X—>00

Now, taking the natural logarithm of both sides, we have

Iny=1In [lim<1+—2—> ]
x>0 X
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and using the fact that the natural logarithmic function is continuous, we write

-l )
Iny= 111’2 Lx In (1 + —x—>] Indeterminate form: o - 0

_[mp+e

= lim M] Indeterminate form: 0/0
x>0 \_ 1/x
[ (=20 +

i | A2 5 (2/x)])] L'Hopital's Rule
x> | —1/x

= lim S S =2

o 1+ (2/x)

Finally, since In y = 2, we know that y = ¢? and we conclude
that

lim <1 + l) = ¢? |
x>0 X

EXAMPLE 5 Indeterminate form 0°

Evaluate
lim (sin x
x>0 ( )

Solution: Since direct substitution produces the indeterminate form 0°, we
proceed as follows.

Y= lim (sin x)* Indeterminate form 0°
x->07" s %
Iny =In | lim (sin x)"] Take log of both sides \
x-0 -~
= lim [In (sin x)*] Continuity
x>0"
= liIOI}_ [x In (sin x)] Indeterminate form 0 - (—2)
X
. In (sin x) ,
= lim —— Indeterminate form —=/=
x>0+ 1/x
= lim 0Ly L’Hopital’s Rul
= opital’s Rule
=0+ —1/x° et
—x2
= lim Indeterminate form 0/0
x>0+ tan x
—2x

lim >— =10 L’Hopital’s Rule
x>0 S€CT X

Now, since In y = 0, we conclude that y = €% = 1, and it follows that
lim (sin x)* = 1
x>0t
Remark When evaluating complicated limits like the one in Example 5, it is helpful
to check the reasonableness of the solution with a calculator. For instance, the calcula-

tions shown in Table 8.3 are consistent with our conclusion that (sin x)* approaches 1
as x approaches O from the right.
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TABLE 8.3

x 1.0 0.1 0.01 0.001 0.0001 0.00001

(sin x) 0.8415 0.7942 0.9550 0.9931 0.9991 0.9999

EXAMPLE 6 Indeterminate form o — o

Evaluate

lim (——1 — )
1+ \In x x—1
Solution: Since direct substitution yields the indeterminate form ®© — ®, we

try to rewrite the expression to produce a form to which we can apply
L’Hopital’s Rule. In this case, we combine the two fractions to obtain

1'm<1 _ 1 )zlim[x—l—lnx]
o \In x x—1 —rLEx—1Dlnx

Now, since direct substitution produces the indeterminate form 0/0, we can
apply L’Hopital’s Rule to obtain

1im< e )=lim[ 1= () ]
1+ \In x x—1 =i+ L(x—1DA/x)+1Inx

= lim [_—x—_l__]
—irLlx—1+xlnx ,
:
This limit also yields the indeterminate form 0/0, so we apply L’Hopital’s
Rule again to obtain .

; L. i )_. [ 1 ]_L -
xl—l>r1qr<lnx x—1 _xl_l,rg 1+x(1/x) +Inx 2 —

Remark We have identified the forms 0/0, /0, 0 — %, 0 - o, 0°, 1%, and «° as

indeterminate. There are similar forms that you should recognize as determinate, such
as

0+ 0 — © —00 — 00 — —© 0 -0 07* —>

In each of the examples so far in this section, we have used L Hopital’s
Rule to find a limit that exists. L’Hopital’s Rule can also be used to conclude
that a limit is infinite and this is demonstrated in the last example.

EXAMPIE 7  An infinite limit

Evaluate

lim —

x>0 X
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Solution:
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Direct substitution produces the indeterminate form o/, so we

apply L’Hopital’s Rule to obtain

lim

x>0 X

e.\’ % 4
= lim

x>0 1

=lim e* =

X%

Now, since e* — ® as x — ©, we conclude that the limit of e*/x as x — ®

is also infinite.

]

As a final comment, we remind you that L’Hopital’s Rule can only be
applied to quotients leading to the indeterminate forms 0/0 or o/, For in-
stance, the following application of L’Hdpital’s Rule is incorrect.

ex

lim — =

x>0 X

s 8
=l

X
Incorrect use of L’Hopital’s Rule

The reason this application is incorrect is that, even though the limit of the
denominator is 0, the limit of the numerator is 1—which means that the
hypotheses of L’Hopital’s Rule have not been satisfied.

=

In Exercises 1-34, evaluate each limit, using L’Hépital’s

Rule where necessary.

. xX2—x—2 s B ki 2
T Bl Bl
s )
3. lim4—le 4. lim——i—f—
x>0 X 2= x—2
S i ) 6. e T2
0 x x>0+ X
g, @m0, ey o0a
x>0+ X
: In
B Ll-{xll -1
g ALt 10. lim < ,
x> X x>x X \
. -+ 1 . x—1 ,,{_‘
R R BT 3,80
. 2+ 2%+3 L e, ”‘ci_g
e ;lcl—gcl x—1 13: il_r)g e 4 ¢
15. lim > In x 16. lim (L—- %)
x>0 x>0 X X
. 8 X
.t (g - 15
: 1 Tl
18'1332‘(;;2—4 24
X 3 2
19. lim ——— 20. lim (— — )
oo Va2 + 1 =»*\lnx x-—1
21. lim x'* 22, lim (¢* + x)'*
x>0t x>0t

23. lim ' 2. lim (1 = %)
25. lim (1 + 0!~ 26. lim —2X
x> x> X — T
o7 Ty 2 28. lim &
x>0 sin 3x x>0 sin bx
29, lin(} X CSC X 30. Iirg x% cot x
; o1 : 1
31. lim \x sin — 32. lim x tan —
X0 57 x>0 X
33, I 2resin X 34. lim arctan x — (7/4)
x>0 % x-1 x—1

In Exercises 35—40, use L’Hopital’s Rule to determine the
comparative rates of increase of the functions

flx) = x"

gx) =e™

h(x) = (In x)"
where n > 0, m > 0, and x — . The limits obtained in
these exercises suggest that (In x)" tends toward infinity

more slowly than x™, which in turn tends toward infinity
more slowly than e™.

3

. X .X

3s. )ltl_)rg ez 36. }gg pes
3 2
37. lim (me) 38. 1imﬁ’;§—)
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